
Summary of Cornerstone 2D NMR Experiments
Name: 

EXSY (NOESY) 

COSY (DQF-COSY) 

TOCSY 

HSQC / HMQC 

Correlation by: 

1H-1H exchange  

1H-1H Scalar Couplings  
(directly coupled spins only) 

1H-1H Scalar Couplings  
(whole spin system) 

1H-X 1JHX Scalar couplings 
(X = 13C, 13N, 13P, 29Si…) 
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homework: assign the spectrum



The Tip of the Iceberg….



The Tip of the Iceberg….



Advanced NMR & 
Imaging

Week 10: Relaxation & Structure Determination





Objectives
• Learn how nuclear magnetism returns to 

equilibrium. 

• Know the approach the describing the process 
microscopically. 

• Relate this to molecular properties.



"In France there is great confusion between 
knowledge 

and 
understanding"

Prof. S. Caldarelli (Marseille), talking about higher education.



Nuclear Spin Relaxation
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how does the system move from the non 
equilibrium state back to equilibrium?



Nuclear Spin Relaxation

Relaxation (the return to equilibrium) is induced by fluctuating magnetic fields that
induce transitions.

These fields can induce rotations around the z-axis, or around the x,y axes.

If the fields were coherent (i.e. the same everywhere in the sample) they would induce 
rotations of the bulk magnetization (e.g. a pulse). Coherent fields are treated using normal 
density matrix theory.
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Nuclear Spin Relaxation
If the fields are not coherent (e.g. different parts of the ensemble experience different fields)
they will lead to a loss of coherence. 
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Loss of Coherence
Dephasing in the Ensemble

= =

s(0) s(t)
random uncorrelated 

longitudinal fields

H(t)

H'(t)

H''(t)

H'''(t)

Note that in this picture, each micro-element of the ensemble undergoes a perfectly coherent unitary rotation. Simply 
because these rotations are different for each element, the macroscopic ensemble loses coherence.

(there is no magic)



Nuclear Spin Relaxation

If the fields are not coherent (e.g. different parts of the ensemble experience different fields)
they will lead to a loss of coherence. 

For example, an incoherent rotation around the z axis will lead to dephasing. This is 
transverse relaxation. It is caused by fields with a modulation frequency around 0. (They 
do not change the total energy of the system: "spin-spin relaxation")

Incoherent rotations around  the x,y axis will change the value of the z-component of the 
magnetization. They are caused by fields with a modulation frequency around the Larmor
frequency. (They change the total energy of the system: "spin-lattice relaxation").

How can we describe the effect of incoherent fields on the system? 
What generates the incoherent fields?



Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

Consider a spin system with a Hamiltonian:

  

† 

H = H 0 + H1 t( )

The equation of motion is, as always:

 

† 

ds
dt

= -i H 0 + H1 t( )( ),s[ ] (1)

However, the task of calculating the evolution of the density matrix when part of the Hamiltonian
is random obviously requires a special treatment.

(1) Isolate the effect of the spin-lattice coupling through the use of an interaction
representation:

  

† 

Q = exp -iH 0t( )Qexp +iH 0t( )

which yields for one part of the ensemble:

† 

d ˜ s t( )
dt

= -i ˜ H - H 0( ), ˜ s t( )[ ] = -i ˜ H 1 t( ), ˜ s t( )[ ]
we take the average over all identical molecules in the sample, which is equivalent to a time-
average for one molecule, indicated by a bar:

† 

d ˜ s t( )
dt

= -i ˜ H 1 t( ), ˜ s t( )[ ] (2)
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Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

  

† 

d ˜ s t( )
dt

= -i ˜ H 1 t( ), ˜ s t( )[ ] (2)

(2) The evolution of the density matrix produced by a small rapidly varying effective
Hamiltonian is slow. Starting from 

† 

˜ s 0( ) we can calculate its form at time t through a second
order expansion:

  

† 

˜ s t( ) = ˜ s 0( ) - i ˜ H 1 ¢ t ( ), ˜ s 0( )[ ]d ¢ t 
0

t

Ú - d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú ˜ H 1 ¢ t ( ), ˜ H 1 ¢ ¢ t ( ), ˜ s 0( )[ ]È 
Î Í 

˘ 
˚ ˙ (3)

(3) Since the spin-lattice coupling has zero average the first term vanishes. Limiting to 2nd

order is valid only if t is such that 

† 

˜ s t( ) ª ˜ s 0( ) .

Also we must replace 

† 

˜ s 0( ) by 

† 

˜ s 0( ) - ˜ s eq to account for the finite temperature of the lattice
(system does not relax back to zero polarisation):

  

† 

˜ s t( ) - ˜ s 0( ) = - d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú ˜ H 1 ¢ t ( ), ˜ H 1 ¢ ¢ t ( ), ˜ s 0( ) - ˜ s eq[ ]È 
Î Í 

˘ 
˚ ˙ (4)
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Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

(4) The perturbing Hamiltonian is a sum of terms each of which is the product of a spin
operator by a random function of time. In the interaction representation the various spin
operators oscillate at different frequencies. For simplicity we assume that there is just one
operator for each frequency:

  

† 

H1 t( ) = Va Fa t( )
a

Â

and 

† 

˜ V a t( ) = exp iwa t( )Va .

The random functions have zero average, and since they are stationary random functions:

† 

Fa t( )Fb
* ¢ t ( ) = Gab t - ¢ t ( )

and thus equation (4) becomes

˜ s t( ) - ˜ s 0( ) = - Va , Vb
†, ˜ s 0( ) - ˜ s eq[ ][ ]

ab

Â d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú Gab ¢ t - ¢ ¢ t ( )exp i wa ¢ t -wb ¢ t ( ){ }. (5)

- - 
  
˜ s t( ) ˜ s 0( ) = d ¢ t 

0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú ˜ H 1 ¢ t ( ), ˜ H 1 ¢ ¢ t ( ), ˜ s 0( ) - ˜ s eq[ ]È 
Î Í 

˘ 
˚ ˙ (4)

lyndonemsley
Information Only



Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

(4) The perturbing Hamiltonian is a sum of terms each of which is the product of a spin
operator by a random function of time. In the interaction representation the various spin
operators oscillate at different frequencies. For simplicity we assume that there is just one
operator for each frequency:

  

† 

H1 t( ) = Va Fa t( )
a

Â

and 

† 

˜ V a t( ) = exp iwa t( )Va .

The random functions have zero average, and since they are stationary random functions:

† 

Fa t( )Fb
* ¢ t ( ) = Gab t - ¢ t ( )

and thus equation (4) becomes

˜ s t( ) - ˜ s 0( ) = - Va , Vb
†, ˜ s 0( ) - ˜ s eq[ ][ ]

ab

Â d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú Gab ¢ t - ¢ ¢ t ( )exp i wa ¢ t -wb ¢ t ( ){ }. (5)

- - 
  
˜ s t( ) ˜ s 0( ) = d ¢ t 

0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú ˜ H 1 ¢ t ( ), ˜ H 1 ¢ ¢ t ( ), ˜ s 0( ) - ˜ s eq[ ]È 
Î Í 

˘ 
˚ ˙ (4)

spin operators
(random) time dependence 
of the interaction

F(t)

t

G(t-t')

t-t'
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Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

† 

˜ s t( ) - ˜ s 0( ) = - Va , Vb
†, ˜ s 0( ) - ˜ s eq[ ][ ]

ab

Â d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú Gab ¢ t - ¢ ¢ t ( )exp i wa ¢ t -wb ¢ t ( ){ }. (5)

(5) We now make a secular approximation that the contribution to the evolution of 

† 

˜ s 0( ) of
terms with

† 

   wa ≠ wb (a ≠ b) can be neglected. We also introduce a change of variables 

† 

t = ¢ t - ¢ ¢ t 
and we obtain for the double integral:

† 

d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú ....= t - ¢ t ( )Gaa t( )exp iwat{ }dt
0

t

Ú

We now make a physical approximation that 

† 

t c , the decay time of the autocorrelation function

† 

Gaa t( ) is much shorter than the timescale of evolution of 

† 

˜ s . Thus we can choose a time 

† 

t >> t c

and still short enough for the change in 

† 

˜ s  to be small. We have then

† 

d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú .... ª t Gaa t( )exp iwat{ }dt
0

•

Ú

or, defining a spectral density function,

d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú .... ª tJaa w( ) .

Since 

† 

˜ s t( ) - ˜ s 0( )  is small, we have approximately
˜ s t( ) - ˜ s 0( )

t
ª

ds̃
dt

and equation (5) becomes

† 

d ˜ s
dt

= - Va , Va
†, ˜ s -s̃ eq( )[ ][ ]Ja wa( )

a

Â (6)

THIS IS THE REDFIELD-ABRAGAM MASTER EQUATION FOR THE EVOLUTION OF THE DENSITY
MATRIX UNDER THE EFFECT OF A RANDOM PERTURB ATION.

It is valid on a coarse grained time scale, that is over time intervals several times larger than 

† 

t c .
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Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

† 

˜ s t( ) - ˜ s 0( ) = - Va , Vb
†, ˜ s 0( ) - ˜ s eq[ ][ ]

ab

Â d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú Gab ¢ t - ¢ ¢ t ( )exp i wa ¢ t -wb ¢ t ( ){ }. (5)

(5) We now make a secular approximation that the contribution to the evolution of 

† 

˜ s 0( ) of
terms with

† 

   wa ≠ wb (a ≠ b) can be neglected. We also introduce a change of variables 

† 

t = ¢ t - ¢ ¢ t 
and we obtain for the double integral:

† 

d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú ....= t - ¢ t ( )Gaa t( )exp iwat{ }dt
0

t

Ú

We now make a physical approximation that 

† 

t c , the decay time of the autocorrelation function

† 

Gaa t( ) is much shorter than the timescale of evolution of 

† 

˜ s . Thus we can choose a time 

† 

t >> t c

and still short enough for the change in 

† 

˜ s  to be small. We have then

† 

d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú .... ª t Gaa t( )exp iwat{ }dt
0

•

Ú

or, defining a spectral density function,

d ¢ t 
0

t

Ú d ¢ ¢ t 
0

¢ t 

Ú .... ª tJaa w( ) .

Since 

† 

˜ s t( ) - ˜ s 0( )  is small, we have approximately
˜ s t( ) - ˜ s 0( )

t
ª

ds̃
dt

and equation (5) becomes

† 

d ˜ s
dt

= - Va , Va
†, ˜ s -s̃ eq( )[ ][ ]Ja wa( )

a

Â (6)

THIS IS THE REDFIELD-ABRAGAM MASTER EQUATION FOR THE EVOLUTION OF THE DENSITY
MATRIX UNDER THE EFFECT OF A RANDOM PERTURB ATION.

It is valid on a coarse grained time scale, that is over time intervals several times larger than 

† 

t c .

the (auto) correlation
function

G(t)

t

the spectral 
density function

the double 
commutator

J(w)

w

FT
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Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

d ˜ s 
dt

= - Va , Va
†, ˜ s - ˜ s eq( )[ ][ ]Ja wa( )

a

Â

the (auto) correlation
function

G(t)

t

the spectral 
density functionthe double commutator:

the dynamics of the density matrix induced 
by the fluctuations depend on the operator 
form of the perturbing Hamiltonian

J(w)

w

FT

the value of Ja(wa) gives the size
of the field generated by the

random fluctuations at the relevant
frequency (e.g. 0, w0, 2w0)

wa



Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

The evolution in the interaction representation of a physical variable Q is given by

† 

d
dt

Q = - Ja wa( ) Q,Va[ ],Va
†[ ] - Q,Va[ ],Va

†[ ]
eq{ }

a

Â (7)

EXAMPLE: LONGITUDINAL RELAXATION OF IDENTICAL SPINS

  

† 

˜ H = w0Iz

The spin-lattice Hamiltonian is of the form

  
H1 t( ) = VmFm t( )

m

Â

where we have 

† 

Iz ,Vm[ ] = mVm  so that 

† 

˜ V m t( ) = exp imw0t( )Vm . Equation (7) applied to 

† 

Q = Iz  yields

  

† 

d
dt

Iz = - Jm mw0( ) Iz ,Va[ ],Va
†[ ] - Iz,Va[ ],Va

†[ ]
eq{ }

m

Â .

We can evaluate the trace and obtain

† 

d
dt

Iz = -
1
T1

Iz - Iz eq( ) ,

with

† 

1
T1

= - m2 Tr VmVm
†( )

Tr Iz
2( )

Jm mw0( )
m

Â . (8)



Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

† 

1
T1

= - m2 Tr VmVm
†( )

Tr Iz
2( )

Jm mw0( )
m

Â . (8)

we often find that correlation functions are exponential,

† 

Fm t( )Fm
* t + t( ) = Fm

2 exp -t t c( )

so that

† 

Jm w( ) = Fm
2 exp -t t c( )exp iwt( )dt

0

•

Ú

† 

Jm w( ) = Fm
2 t c

1+ w 2t c
2 + i wt c

2

1+ w 2t c
2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(9)

which is complex. The imaginary part is compensated by the term J-m w( ), so we retain only the
real part, ensuring that T1 is real, as befits a longitudinal relaxation rate.



The NMR Hamiltonian: The Key to the Spectrum
Reminder: 

  s t( ) = exp -iHt( )s 0( )exp +iHt( ) .

  H = H z + HQ + H D + H cs + H J

Zeeman Interaction
(~100 MHz)

Quadrupolar Interaction
(0-100 MHz)

Dipolar Interaction
(0-20 kHz)

Chemical Shift
(0-2000 ppm)

Scalar Coupling
(0-200 Hz)

B0



NMR interactions are anisotropic

The chemical shift can be thought of as the shielding of the nucleus  
from the external magnetic field by the electrons.  

 
The magnetic field is a vector quantity (the magnetic field has a well defined direction). 

The electronic distribution around the nucleus is highly anisotropic. 

Therefore the chemical shift must depend on the orientation of the molecule with respect to the 
magnetic field.



NMR interactions are anisotropic

Consider the chemical shift of 
the CH2 carbon resonance in 

ethanol 



NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.

B0
Here we show the chemical shift 

tensor as an ellipsoid 
superimposed on the molecular 

structure. 

The shift tensor is fixed in the 
molecular frame. 

Reminder: Shielding (σ) is 
related to chemical shift (δ) by: 

δ ∝ (1 - σ) 



NMR interactions are anisotropic

The chemical shift is anisotropic. Therefore the chemical shift must depend on the orientation 
of the molecule with respect to the magnetic field. The chemical shift is given by the 

magnitude of the tensor component that is parallel to the magnetic field for a given orientation. 

B0

δ11

δ22δ33

δ11 = 104 ppm ; δ22 = 44 ppm ; δ33 = 25 ppm  (by convention δ11 > δ22 > δ33)

255075100125

carbon-13 chemical shift (ppm)



NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.
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NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.
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NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.
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NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.
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NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.
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NMR interactions are anisotropic

The chemical shift is anisotropic. It is not described by a single number, but by a second rank 
spatial tensor, defined by the three principal values of the tensor and the angles that define the 

orientation of the principle values in the molecular reference frame.

B0

255075100125

δ11

δ22δ33

carbon-13 chemical shift (ppm)

δ11 = 104 ppm ; δ22 = 44 ppm ; δ33 = 25 ppm  (by convention δ11 > δ22 > δ33)

δ22δ11 δ33

If the molecule tumbles, the chemical 
shift will vary with time



The Dipolar Interaction
The classical interaction energy E between two magnetic moments  and  is
 

 
  
E = µ1 . µ2

r3 −
3 µ1

µ1

. r ( ) µ2

µ2

. r ( )
r5

 

  
µ0

4π
 

and the corresponding spin Hamiltonian is therefore
 

 
    
H D = µ0ℏ

2γ1γ 2

4πr12
3 I1 . I2 −

3 I1 . r12( ) I2 . r12

r12

( )
r12

2

 
We will now do something strange, because we know that subsequently the dipolar interaction,
like the chemical shift, will be truncated by   

€ 

H 0. We expand   H D  into a series of orientationally
dependent terms, called the dipolar alphabet:

    
H D = µ0ℏ

2γ1γ 2

4πr3 A + B + C + D + E + F( )

where A = I1zI2z 1− 3cos2 θ( )
B = − 1

4 I1
+I2

− + I1
−I2

+( ) 1− 3cos2 θ( )
C = − 3

2 I1
+I2z + I1zI2

+( )sinθ cosθ exp −iφ( )
D = − 3

2 I1
−I2z + I1zI2

−( )sinθ cosθ exp +iφ( )
E = − 3

4 I1
+I2

+ sin2 θ exp −2iφ( )
F = − 3

4 I1
−I2

− sin2 θ exp +2iφ( )

z

y

θ

φ

)

)

(

(



Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

We have described the longitudinal relaxation rate in the presence of some arbitrary fluctuating
fields. We immediately see that it is dependent on the correlation time of the fluctuation (i.e.
molecular tumbling rate). To see this in detail we must specify the interactions. It will come as no
surprise that the fluctuating interaction is usually the dipolar interaction.

  

† 

H D = T2mR2m
m

Â

Thus, with 

† 

Vm = -
g 2h
r3 T2m  and 

† 

Fm = R2m
* , we obtain with equation (8)

† 

1
T1

=
g 2h
r3

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ¥

1
8

¥ 2 ¥ J1 w0( ) + 4J2 2w0( )( )

Rotational Brownian motion leads to exponential correlation functions,

† 

R2m
2 exp -t t c( ) =

6
5

exp - t t c( )

so according to equation (9)we find that the relaxation rate is

† 

1
T1

=
3

10
g 4h 2

r6

Ê 

Ë 
Á 

ˆ 

¯ 
˜ t c

1
1+ w0

2t c
2 +

4
1+ 4w0

2t c
2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

It depends on internuclear distance and the details of molecular motion.

r

tc
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Relaxation in a Nutshell

• Using second order perturbation theory, Longitudinal & Transverse relaxation 
rates can be related exactly to internuclear distances and molecular 
dynamics 

• The example here is T1 relaxation by the dipolar coupling between two identical 
spins undergoing rotational Brownian motion



Quantum Spins in a Classical Lattice: 
The Abragam formulation of the Redfield Approach

SUMMARY OF THE FORMALISM

What we have outlined is Redfield theory, which was first cast in operator form by Abragam.

The Redfield Apporximations that we made in the derivation are:

(a) It is possible to neglect the correlation between   

† 

˜ H 1 t( )  and 

† 

˜ s 0( ). This allows the

averaging over the ensemble 
  

† 

-i ˜ H 1 t( ), ˜ s 0( )[ ]
(b) It is possible to replace 

† 

˜ s 0( ) by 

† 

˜ s t( )  on the r.h.s.

(c) It is possible to extend the upper limit of the integral to infinity.

(d) It is possible to neglect all higher order terms in the expansion.

All these approximations are valid if 
  

† 

H1

2
t c

2  is a very small number.

Thus it is valid for short correlation times (i.e. rapid molecular motions)
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Cross Relaxation Between Unlike Spins 
The Abragam formulation of the Redfield Approach

EXAMPLE 2: DIPOLAR RELAXATION OF TWO UNLIKE SPINS

  

† 

H 0 = wI Iz + wSSz

If there is a large difference in Larmor frequencies, the definition of the 

† 

Va  leads to a splitting up
of the terms in the dipolar Hamiltonian

† 

T20 = A + B + ¢ B 

† 

T2,±1 = C±1
I + C±1

S

and in the interaction representation (a doubly rotating frame)

† 

˜ A t( ) = 2
6

IzSz

˜ B t( ) = - 1
2 6

I+S- exp i w I -wS( )t{ }
˜ B † t( ) = - 1

2 6
I-S+ exp -i wI - wS( )t{ }

˜ C ±1
I t( ) = 1

2 I±Sz exp ±iw I t( )
˜ C ±1

S t( ) = ±

-+
1
2 IzS± exp ±iwI t( )

whereas the other terms remain unaltered

† 

T2,±2 = - 1
2 I±S± exp ±i w I + wS( )t{ } .
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Cross Relaxation Between Unlike Spins 
The Abragam formulation of the Redfield Approach

We must now calculate the evolution of Q = Iz,Sz ,.....etc . We do not give details but we remark
that the double commutator

Iz,B[ ],B†[ ] ∝ I+S ,I S+[ ] .

Which through repeated use of AB,C[ ] = A B,C[ ] + A,C[ ]B  yields

I+S ,I S+[ ] = I+ S ,I S+[ ] + I+,I S+[ ]S
= 2SzI+I + 2IzS+S

= 2Sz
1
2 + Iz( ) + 2Iz

1
2 + Sz( )

= Iz Sz

Thus this term yields a contribution proportional to Iz Iz eq( ) Sz Sz eq( ) . The detailed

calculation finishes with the Solomon equations expressing the nuclear Overhauser effect.

d
dt

Iz

Sz

 

 
 

 

 
 = I

S

 

 
 

 

 
 

Iz

Sz  
 

 
 

with

I = 1
10

I
2

S
2h2

r6

 

 
 

 

 
 c

3
1+ I

2
c
2 + 1

1+ I S( )2
c
2

+ 6
1+ I + S( )2

c
2

 
 
 

  

 
 
 

  

= 1
10

I
2

S
2h 2

r6

 

 
 

 

 
 c

1
1+ I S( )2

c
2

+ 6
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c
2

 
 
 

  

 
 
 

  

∆
∆
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Cross Relaxation Between Unlike Spins 
The Abragam formulation of the Redfield Approach

We must now calculate the evolution of 

†

Q = Iz,Sz ,.....etc . We do not give details but we remark
that the double commutator

†

Iz,B[ ],B†[ ] µ I+S−,I−S+[ ] .

Which through repeated use of 

†

AB,C[ ] = A B,C[ ] + A,C[ ]B  yields

†

I+S−,I−S+[ ] = I+ S−,I−S+[ ] + I+,I−S+[ ]S−

= −2SzI+I− + 2IzS+S−

= −2Sz
1
2 + Iz( ) + 2Iz

1
2 + Sz( )

= Iz − Sz

Thus this term yields a contribution proportional to 

†

Iz − Iz eq( ) − Sz − Sz eq( ) . The detailed

calculation finishes with the Solomon equations expressing the nuclear Overhauser effect.

d
dt

Iz

Sz

=
ρI σ
σ ρS

∆Iz

∆Sz

with

† 

ρI = 1
10

γ I
2γ S

2h2

r6 τ c
3

1+ ω I
2τ c

2 + 1
1+ ω I −ωS( )2 τ c

2
+ 6

1+ ω I + ωS( )2τ c
2

σ = 1
10

γ I
2γ S

2h 2

r6 τ c
1

1+ ω I −ωS( )2τ c
2

+ 6
1+ ωI + ωS( )2τ c

2

( ((

(
(

)

)
)

) )

lyndonemsley
Callout
This has exactly the same form as the exchange matrix: the nOe will lead to magnetization exchange

lyndonemsley
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The magnetization exchange rate is determined by the rotational correlation time of the molecule & the inter-nuclear distance
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Cross Relaxation in a Nutshell

• We predict that dipolar relaxation between different spins will lead to 
magnetisation transfer with a rate that depends on internuclear 
distances and molecular dynamics 

• This is the nuclear Overhauser effect



Conclusions I
• Motion of nuclear spins is always induced by magnetic 

fields. 

• Those fields can be coherent, or incoherent (random). 

• Random fields acting statistically independently on an 
ensemble will induce a return to equilibrium. 

• Longitudinal random fields (i.e. at frequencies close to 
zero) induce transverse relaxation. 

• Transverse (i.e. resonant) random fields induce transverse 
& longitudinal relaxation.



Conclusions II
• The motion of an ensemble of spins experiencing random fields 

can be described by a second order perturbation approach that 
yields the Redfield equation of motion. (Under certain 
approximations.) 

• Fluctuating fields arise primarily (but not only) from anisotropic 
interactions being modulated by molecular motion. 

• Anisotropic interactions include the chemical shift and the dipolar 
coupling. (The quadrupolar interaction for spin I > 1/2; the 
electron-nuclear hyperfine interaction for paramagnetic samples)). 

• Dipolar relaxation is usually the dominant mechanism for spin  
I = 1/2 in diamagnetic liquids.



Structure

https://www.youtube.com/watch?v=iaHHgEoa2c8

https://www.youtube.com/watch?v=iaHHgEoa2c8


Objectives
• Discover how can distances be measured 

experimentally using the nOe with steady-state or 
transient experiments. 

• Understand how distances can be determined from 
2D NOESY spectra. 

• Understand the five step protocol for complete 
protein structure determination.



Cross Relaxation in a Nutshell

• We predict that dipolar relaxation between different spins will lead to 
magnetisation transfer with a rate that depends on internuclear 
distances and molecular dynamics 

• This is the nuclear Overhauser effect



Dependence of Relaxation on Correlation Times

Longitudinal relaxation times go
through a minimum at w0tc ~ 1.1

Transverse relaxation times decrease
with increasing correlation times.



Steady-State nOe

From which we can determine the maximum 
theoretical enhancement for a two-spin system:

Consider the case where we continuously irradiate one of the spins (S), so as to saturate its 
transitions. The steady state that results (dIz/dt = 0) is:

with

Iz − Iz
0( ) = σ

ρI

Sz
0( )

ηmax =
γI  σ
γS  ρI

ρI = 1
10

γ I
2γ S

2h2

r6 τ c
3

1+ ω I
2τ c

2 + 1
1+ ω I −ωS( )2 τ c

2
+ 6

1+ ω I + ωS( )2τ c
2

σ = 1
10

γ I
2γ S

2h 2

r6 τ c
1

1+ ω I −ωS( )2τ c
2

+ 6
1+ ωI + ωS( )2τ c

2

(
(

)
)

d
dt

Iz

Sz

=
ρI σ
σ ρS

∆Iz

∆Sz
( (( )) )



Steady-State nOe

1H
t2τ

w/wo long low power irradiation at 
S spin resonance frequency



Steady-State nOe

1H
t2τ

with long low power irradiation at 
S spin resonance frequency



Steady-State nOe

1H
t2τ

w/wo long low power irradiation at 
S spin resonance frequency

nOe transfer from S to I

We conclude that S and I are close in space 
(typically <5Å)



nOe difference experiment on 7-Methoxychrome
1H

t2τ

https://www.chem.wisc.edu/areas/reich/nmr/08-tech-02-noe.htm



Examples of the use of nOe difference experiments

https://www.chem.wisc.edu/areas/reich/nmr/08-tech-02-noe.htm



Steady-State nOe: 
nOe Difference Spectroscopy

H1

t2

90°

long (seconds), very low power 
continuous irradiation at the exact 
resonance frequency of one spin

normal spectrum

difference spectra,
with/without irradiation
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Steady-State nOe: 
nOe Difference Spectroscopy

H1

t2

90°

long (seconds), very low power 
continuous irradiation at the exact 
resonance frequency of one spin



Steady-State vs Transient nOe

1H
t2τ 1H

t2τ

w/wo long low power irradiation at 
S spin resonance frequency

w/wo selective 180° pulse at 
S spin resonance frequency



Cornerstone NMR Experiments: NOESY/EXSY
(Determining Exchange and Internuclear Distances)

1H t1 tm
t2

first p/2 pulse excites

proton coherence

t1 evolution under
1H chemical shift

second p/2 pulse excites

proton coherence

t2 evolution under
1H chemical shift

third p/2 pulse transfers

coherence to J-coupled neighbors

w1

w2

How can we quantify the exchange or relaxation processes 
going on during the mixing time?
Can we determine internuclear distances from 
experimental measures of the nuclear Overhauser effect?



Two-Dimensional Exchange Spectroscopy (EXSY) 

     
1H t� om

t�

ILUVW�ʌ���SXOVH�H[FLWHV
SURWRQ�FRKHUHQFH

t1�HYROXWLRQ�XQGHU
1+�FKHPLFDO�VKLIW

VHFRQG�ʌ���SXOVH�FRQYHUWV�FRKHUHQFH
WR�ORQJLWXGLQDO�PDJQHWL]DWLRQ�

t��HYROXWLRQ�XQGHU
1+�FKHPLFDO�VKLIW

WKLUG�ʌ���SXOVH�H[FLWHV�
SURWRQ�FRKHUHQFH�DIWHU�Ĳ�SHULRG�����

Proton two-dimensional exchange spectrum of the organometallic fluxional compound [ReBr(CO)3(Me2-bppy)], where 
bppy denotes 2,6-bis(pyrazol-1-yl)pyridine. The mixing interval was τm = 0.1 s. The off-diagonal peaks may be interpreted 
in terms of an exchange of the metal atom between two pairs of nitrogen binding sites. 
Adapted from E. W. Abel, et al., J. Chem. Soc. Dalton Trans., 1079 (1994).
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Cross Relaxation in a Nutshell

• We predict that dipolar relaxation between different spins will lead to
magnetisation transfer with a rate that depends on internuclear
distances and molecular dynamics

• This is the nuclear Overhauser effect



Longitudinal Exchange in EXSY
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Ѭm = 0 kѬm < 1 kѬm ~ 1 kѬm > 2

IAA Ѭm( ) = 1
2 1+ exp ï2kѬm{ }[ ]exp ïѬm T1{ }MA 0

IBB Ѭm( ) = 1
2 1+ exp ï2kѬm{ }[ ]exp ïѬm T1{ }MB 0

IAB Ѭm( ) = 1
2 1ïexp ï2kѬm{ }[ ]exp ïѬm T1{ }MB0

IBA Ѭm( ) = 1
2 1ïexp ï2kѬm{ }[ ]exp ïѬm T1{ }MA0

Diagonal peak
amplitudes

Cross peak
amplitudes
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For a 2 spin system, the 2x2 dynamic matrix leads to an analytical solution, and for a symmetrical
case we obtain:

where for magnetization exchange induced by nOe, k = σ and T1 = ρ. 



Gramicidin A
The whole system

Cornerstone NMR Experiments: NOESY
(Determining Internuclear Distances)

ppm

9 8 7 6 5 4 3 2 1 0 ppm

9

8

7
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5

4

3

2

1

0
NOESY Spectrum of Gramicidin
The intensity of the cross peaks is related 
to the inernuclear distance 
between the two nuclei that are 
correlated.



A Protocol for NMR 3D Structure 
Determination of Proteins

1. Sample Preparation: Overexpression, isotopic labelling
(13C, 15N, 2H), solubility, folding, stability.....

2. Resonance Assignment: COSY (TOCSY) - HSQC/HMQC -
NOESY, higher dimensions.....

3. Distance Measurement: NOESY (+3D variations)

4. Structure Determination Using Experimentally Constrained 
Modelling

5. Dynamic Information from Relaxation Times

yields a full structural and dynamic model



A Protocol for NMR 3D Structure 
Determination of Proteins

2. Resonance Assignment: COSY (TOCSY) - HSQC/HMQC -
NOESY, higher dimensions.....
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2. Resonance Assignment: COSY (TOCSY) - HSQC/HMQC -
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A Protocol for NMR 3D Structure 
Determination of Proteins

3. Distance Measurement: NOESY (+3D variations)



A Protocol for NMR 3D Structure 
Determination of Proteins

4. Structure Determination Using Experimentally Constrained
Modelling



https://www.youtube.com/watch?v=KBiVkWlOxTs

Restrained Molecular Dynamics



A Protocol for NMR 3D Structure 
Determination of Proteins

5. Dynamic Information from Relaxation Times



Conclusions I
• Transverse and longitudinal relaxation rates are directly

related to the rotational correlation times and the timescale
of motion. Relaxation rates are direct probes of molecular
structure & dynamics.

• Dipolar relaxation between two inequivalent spins induces
cross relaxation: spontaneous exchange of magnetisation
between dipolar coupled spins. This is the Overhauser
effect. (When the two spins are both nuclear spins, it is the
nuclear Overhauser effect (nOe)).

• Cross relaxation rates are determined by the rate of motion
and the internuclear distance (σij ∝ rij

-6).



Conclusions II
• The size and sign of the nOe effect depends on the motional correlation

times.

• Steady-state nOe vary from extrema of +0.5 for fast motions to -1 for slow
motions.

• Conformational analysis can be performed with steady-state or transient 1D
nOe experiments involving selective saturation or inversion, respectively.

• Multiple nOe can be be measured simultaneously in the 2D EXSY
experiment

• Pairwise distances can be obtained quantitatively from NOESY spectra
using exactly the same analysis as for exchange.

• Full structural & dynamic pictures of proteins can be obtained from a 5 step
protocol



Did You Understand?



 






